Science

BeDaddy® a été développé en s’appuyant sur des études scientifiques menées sur le rôle du stress oxydatif,  de la génétique,  de l’alimentation et des facteurs environnementaux sur la qualité spermatique.

1.1 Les causes de l’infertilité masculine

Le stress oxydatif

Le stress oxydatif est l’une des principales causes d’infertilité masculine : il est associé avec un risque accru de fragmentation de l’ADN spermatique, une diminution de la motilité des spermatozoïdes, une concentration et une morphologie anormales.

L’alimentation

Plusieurs études cliniques montrent qu’une alimentation inappropriée, le surpoids et l’obésité sont des facteurs négatifs responsables d’une altération de la qualité spermatique.

Les facteurs environnementaux

Plusieurs facteurs environnementaux et de style de vie – les habitudes alimentaires, l’activité physique, le poids, la consommation de tabac, de drogue et d’alcool – auraient une influence sur le stress oxydatif et, par voie de conséquence, sur les paramètres spermatiques et sur les taux de fécondation. À l’inverse, un changement d’habitudes alimentaires est susceptible d’améliorer la qualité spermatique.

L’intérêt des compléments alimentaires

Une revue de 2018 prenant en compte des études cliniques publiées entre 2002 et 2017 montre l’intérêt de l’utilisation d’antioxydants oraux comme les vitamines C et E, la carnitine, le CoQ10, le zinc, ou le sélénium sur la qualité spermatique d’hommes hypofertiles.

1.2 Le rôle de la génétique

En adhérant au programme BeDaddy, votre médecin va vous prescrire un génotypage.  C’est à partir de ce dernier et de votre phénotype que votre Nutrinome® va être calculé.

Les gènes analysés ont été sélectionnés pour leur implication dans le métabolisme et parce que certaines mutations sur ces gènes entraînent des désordres métaboliques et auraient ainsi des effets indirects sur votre fertilité.

 

19 gènes ont été sélectionnés sur la base de résultats scientifiques montrant qu’il était possible d’agir sur ces désordres métaboliques via à une nutrition adaptée.

  • 5 gènes régulant l’équilibre RedOx
  • 5 gènes régulant le métabolisme énergétique
  • 4 gènes régulant le métabolisme des acides aminés et des vitamines
  • 2 gènes régulant la qualité de vie
  • 3 gènes régulant le métabolisme lipidique

Pour chacun de ces gènes et en fonction de la mutation identifiée, notre algorithme Salus® optimisera vos besoins en certains nutriments. En pratique, votre alimentation sera totalement individualisée pour vous permettre d’améliorer votre métabolisme et votre fertilité.

Information

BeDaddy génétique

Inscrivez-vous pour être informé sur le programme

Principales références scientifiques

    Fertilité / Style de vie & Nutrition

    Carlos, S., De La Fuente-Arrillaga, C., Bes-Rastrollo, M., Razquin, C., Rico-Campà, A., Martínez-González, M., & Ruiz-Canela, M. (2018). Mediterranean Diet and Health Outcomes in the SUN Cohort. Nutrients, 10(4), 439.

    VOIR

    Chavarro, J. E., & Schlaff, W. D. (2018). Introduction. Fertility and Sterility, 110(4),
    557–559.

    VOIR

    Chiu, Y.-H., Chavarro, J. E., & Souter, I. (2018). Diet and female fertility: doctor, what should I eat? Fertility and Sterility, 110(4), 560–569.

    Chiu, Y.-H., Gaskins, A. J., Williams, P. L., Mendiola, J., Jørgensen, N., Levine, H., … Chavarro, J. E. (2016). Intake of Fruits and Vegetables with Low-to-Moderate Pesticide Residues Is Positively Associated with Semen-Quality Parameters among Young Healthy Men. The Journal of Nutrition, 146(5), 1084–1092.

    VOIR

    Danielewicz, A., Przybyłowicz, K., & Przybyłowicz, M. (2018). Dietary Patterns and Poor Semen Quality Risk in Men: A Cross-Sectional Study. Nutrients, 10(9), 1162.

    VOIR

    Efrat, M., Stein, A., Pinkas, H., Unger, R., & Birk, R. (2018). Dietary patterns are positively associated with semen quality. Fertility and Sterility, 109(5), 809–816.

    VOIR

    Gabrielsen, J. S., & Tanrikut, C. (2016). Chronic exposures and male fertility: the impacts of environment, diet, and drug use on spermatogenesis. Andrology, 4(4), 648–661.

    VOIR

    Gaskins, A. J., & Chavarro, J. E. (2017). Diet and fertility: a review. American Journal of Obstetrics and Gynecology.

    VOIR

    Gaskins, A. J., & Chavarro, J. E. (2018). Diet and fertility: a review. American Journal of Obstetrics and Gynecology, 218(4), 379–389.

    VOIR

    Hayden, R. P., Flannigan, R., & Schlegel, P. N. (2018). The Role of Lifestyle in Male Infertility: Diet, Physical Activity, and Body Habitus. Current Urology Reports, 19(7).

    VOIR

    Messerlian, C., Williams, P. L., Ford, J. B., Chavarro, J. E., Mínguez-Alarcón, L., Dadd, R., … for the EARTH Study Team. (2018). The Environment and Reproductive Health (EARTH) Study: a prospective preconception cohort. Human Reproduction Open, 2018(2).

    VOIR

    Nassan, F. L., Chavarro, J. E., & Tanrikut, C. (2018). Diet and men’s fertility: does diet affect sperm quality? Fertility and Sterility, 110(4), 570–577.

    VOIR

    Orzylowska, E. M., Jacobson, J. D., Bareh, G. M., Ko, E. Y., Corselli, J. U., & Chan, P. J. (2016). Food intake diet and sperm characteristics in a blue zone: a Loma Linda Study. European Journal of Obstetrics & Gynecology and Reproductive Biology, 203, 112–115.

    VOIR

    Panth, N., Gavarkovs, A., Tamez, M., & Mattei, J. (2018). The Influence of Diet on Fertility and the Implications for Public Health Nutrition in the United States. Frontiers in Public Health, 6.

    VOIR

    Ricci, E., Al-Beitawi, S., Cipriani, S., Alteri, A., Chiaffarino, F., Candiani, M., … Parazzini, F. (2018). Dietary habits and semen parameters: a systematic narrative review. Andrology, 6(1), 104–116.

    VOIR

    Salas-Huetos, A., Bulló, M., & Salas-Salvadó, J. (2017). Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies. Human Reproduction Update, 23(4), 371–389.

    VOIR

    Schagdarsurengin, U., & Steger, K. (2016). Epigenetics in male reproduction: effect of paternal diet on sperm quality and offspring health. Nature Reviews Urology, 13(10), 584–595.

    VOIR

    Silva, T., Jesus, M., Cagigal, C., & Silva, C. (2018). Food with influence in the sexual and reproductive health. Current Pharmaceutical Biotechnology, 19.

    VOIR

    Skrzypek, M., Wdowiak, A., & Marzec, A. (2017). Application of dietetics in reproductive medicine. Annals of Agricultural and Environmental Medicine.

    VOIR

    Fertilité & Stress Oxydatif

    Adewoyin, M., Ibrahim, M., Roszaman, R., Isa, M., Alewi, N., Rafa, A., & Anuar, M. (2017). Male Infertility: The Effect of Natural Antioxidants and Phytocompounds on Seminal Oxidative Stress. Diseases, 5(1), 9.

    VOIR

    Agarwal, A., & Bui, A. D. (2017). Oxidation-reduction potential as a new marker for oxidative stress: Correlation to male infertility. Investigative and Clinical Urology, 58(6), 385.

    VOIR

    Agarwal, A., Roychoudhury, S., Bjugstad, K. B., & Cho, C.-L. (2016). Oxidation-reduction potential of semen: what is its role in the treatment of male infertility? Therapeutic Advances in Urology, 8(5), 302–318.

    VOIR

    Ahmadi, S., Bashiri, R., Ghadiri-Anari, A., & Nadjarzadeh, A. (2016). Antioxidant supplements and semen parameters: An evidence based review. International Journal of Reproductive Biomedicine (Yazd, Iran), 14(12), 729–736.

    Aitken, R. J. (2016). Oxidative stress and the etiology of male infertility. Journal of Assisted Reproduction and Genetics, 33(12), 1691–1692.

    VOIR

    Ajina, T., Sallem, A., Haouas, Z., & Mehdi, M. (2017). Total antioxidant status and lipid peroxidation with and without in vitro zinc supplementation in infertile men. Andrologia, 49(7), e12703.

    VOIR

    Alahmar, A. T. (2018). The effects of oral antioxidants on the semen of men with idiopathic oligoasthenoteratozoospermia. Clinical and Experimental Reproductive Medicine, 45(2), 57–66.

    VOIR

    Alizadeh, F., Javadi, M., Karami, A. A., Gholaminejad, F., Kavianpour, M., & Haghighian, H. K. (2018). Curcumin nanomicelle improves semen parameters, oxidative stress, inflammatory biomarkers, and reproductive hormones in infertile men: A randomized clinical trial. Phytotherapy Research, 32(3), 514–521.

    VOIR

    Beigi Harchegani, A., Dahan, H., Tahmasbpour, E., Bakhtiari kaboutaraki, H., & Shahriary, A. (2018). Effects of zinc deficiency on impaired spermatogenesis and male infertility: the role of oxidative stress, inflammation and apoptosis. Human Fertility, 1–12.

    VOIR

    Bisht, S., & Dada, R. (2017). Oxidative stress: Major executioner in disease pathology, role in sperm DNA damage and preventive strategies. Frontiers in Bioscience (Scholar Edition), 9, 420–447.

    Busetto, G. M., Agarwal, A., Virmani, A., Antonini, G., Ragonesi, G., Del Giudice, F., … De Berardinis, E. (2018). Effect of metabolic and antioxidant supplementation on sperm parameters in oligo-astheno-teratozoospermia, with and without varicocele: A double-blind placebo-controlled study. Andrologia, 50(3), e12927.

    VOIR

    Darbandi, M., Darbandi, S., Agarwal, A., Sengupta, P., Durairajanayagam, D., Henkel, R., & Sadeghi, M. R. (2018). Reactive oxygen species and male reproductive hormones. Reproductive Biology and Endocrinology, 16(1).

    VOIR

    Dattilo, M., Giuseppe, D., Ettore, C., & Ménézo, Y. (2016). Improvement of gamete quality by stimulating and feeding the endogenous antioxidant system: mechanisms, clinical results, insights on gene-environment interactions and the role of diet. Journal of Assisted Reproduction and Genetics, 33(12), 1633–1648.

    VOIR

    Dobrakowski, M., Kaletka, Z., Machoń-Grecka, A., Kasperczyk, S., Horak, S., Birkner, E., … Kasperczyk, A. (2018). The Role of Oxidative Stress, Selected Metals, and Parameters of the Immune System in Male Fertility. Oxidative Medicine and Cellular Longevity, 2018, 1–8.

    VOIR

    Dorostghoal, M., Kazeminejad, S. R., Shahbazian, N., Pourmehdi, M., & Jabbari, A. (2017). Oxidative stress status and sperm DNA fragmentation in fertile and infertile men. Andrologia, 49(10), e12762.

    VOIR

    Eroglu, M., Sahin, S., Durukan, B., Ozakpinar, O. B., Erdinc, N., Turkgeldi, L., … Karateke, A. (2014). Blood serum and seminal plasma selenium, total antioxidant capacity and coenzyme q10 levels in relation to semen parameters in men with idiopathic infertility. Biological Trace Element Research, 159(1–3), 46–51.

    VOIR

    Fernandez, M. C., & O’Flaherty, C. (2018). Peroxiredoxin 6 is the primary antioxidant enzyme for the maintenance of viability and DNA integrity in human spermatozoa. Human Reproduction, 33(8), 1394–1407.

    VOIR

    García Rodríguez, A., de la Casa, M., Johnston, S., Gosálvez, J., & Roy, R. (2018). Association of polymorphisms in genes coding for antioxidant enzymes and human male infertility. Annals of Human Genetics.

    VOIR

    Ghiasvand, T., Goodarzi, M. T., Shafiee, G., Zamani, A., Karimi, J., Ghorbani, M., & Amiri, I. (2018). Association between seminal plasma neopterin and oxidative stress in male infertility: A case-control study. International Journal of Reproductive Biomedicine (Yazd, Iran), 16(2), 93–100.

    Ilić, B. S., Kolarević, A., Kocić, G., & Šmelcerović, A. (2018). Ascorbic acid as DNase I inhibitor in prevention of male infertility. Biochemical and Biophysical Research Communications, 498(4), 1073–1077.

    VOIR

    Kobori, Y., Suzuki, K., Iwahata, T., Shin, T., Sadaoka, Y., Sato, R., … Rohdewald, P. (2015). Improvement of seminal quality and sexual function of men with oligoasthenoteratozoospermia syndrome following supplementation with L-arginine and Pycnogenol®. Archivio Italiano Di Urologia e Andrologia, 87(3), 190.

    VOIR

    Kumar, N., & Singh, A. K. (2018). Reactive Oxygen Species in Seminal Plasma as a Cause of Male Infertility. Journal of Gynecology Obstetrics and Human Reproduction.

    VOIR

    Landfors, M., Nakken, S., Fusser, M., Dahl, J.-A., Klungland, A., & Fedorcsak, P. (2016). Sequencing of FTO and ALKBH5 in men undergoing infertility work-up identifies an infertility-associated variant and two missense mutations. Fertility and Sterility, 105(5), 1170-1179.e5.

    VOIR

    Lazzarino, G., Listorti, I., Muzii, L., Amorini, A. M., Longo, S., Di Stasio, E., … Bilotta, P. (2018). Low-molecular weight compounds in human seminal plasma as potential biomarkers of male infertility. Human Reproduction (Oxford, England), 33(10), 1817–1828.

    VOIR

    Leisegang, K., Henkel, R., & Agarwal, A. (2017). Redox Regulation of Fertility in Aging Male and the Role of Antioxidants: A Savior or Stressor. Current Pharmaceutical Design, 23(30).

    VOIR

    Lipovac, M., Bodner, F., Imhof, M., & Chedraui, P. (2016). Comparison of the effect of a combination of eight micronutrients versus a standard mono preparation on sperm parameters. Reproductive Biology and Endocrinology, 14(1).

    VOIR

    Magdi, Y., Darwish, E., Elbashir, S., Majzoub, A., & Agarwal, A. (2017). Effect of modifiable lifestyle factors and antioxidant treatment on semen parameters of men with severe oligoasthenoteratozoospermia. Andrologia, 49(7), e12694.

    VOIR

    Majzoub, A., & Agarwal, A. (2018). Systematic review of antioxidant types and doses in male infertility: Benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab Journal of Urology, 16(1), 113–124.

    VOIR

    Martínez-Soto, J. C., Domingo, J. C., Cordobilla, B., Nicolás, M., Fernández, L., Albero, P., … Landeras, J. (2016). Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation. Systems Biology in Reproductive Medicine, 62(6), 387–395.

    VOIR

    Mayorga-Torres, B. J. M., Camargo, M., Cadavid, á. P., du Plessis, S. S., & Cardona Maya, W. D. (2016). Are oxidative stress markers associated with unexplained male infertility? Andrologia.

    VOIR

    O’Flaherty, C., & Matsushita-Fournier, D. (2017). Reactive oxygen species and protein modifications in spermatozoa†. Biology of Reproduction, 97(4), 577–585.

    VOIR

    Palmieri, M., Papale, P., Della Ragione, A., Quaranta, G., Russo, G., & Russo, S. (2016). Antioxidant Treatment of Semen Samples in Assisted Reproductive Technology: Effects of Myo-Inositol on Nemaspermic Parameters. International Journal of Endocrinology, 2016, 1–5.

    VOIR

    Roychoudhury, S., Agarwal, A., Virk, G., & Cho, C.-L. (2017). Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reproductive BioMedicine Online, 34(5), 487–498.

    VOIR

    Sabeti, P., Pourmasumi, S., Rahiminia, T., Akyash, F., & Talebi, A. R. (2016). Etiologies of sperm oxidative stress. International Journal of Reproductive Biomedicine (Yazd, Iran), 14(4), 231–240.

    Showell, M. G., Mackenzie-Proctor, R., Brown, J., Yazdani, A., Stankiewicz, M. T., & Hart, R. J. (2014). Antioxidants for male subfertility. Cochrane Database of Systematic Reviews.

    VOIR

    Silberstein, T., Har-Vardi, I., Harlev, A., Friger, M., Hamou, B., Barac, T., … Saphier, O. (2016). Antioxidants and Polyphenols: Concentrations and Relation to Male Infertility and Treatment Success. Oxidative Medicine and Cellular Longevity, 2016, 1–5.

    VOIR

    Smits, R. M., Mackenzie-Proctor, R., Fleischer, K., & Showell, M. G. (2018). Antioxidants in fertility: impact on male and female reproductive outcomes. Fertility and Sterility, 110(4), 578–580.

    VOIR

    Subramanian, V., Ravichandran, A., Thiagarajan, N., Govindarajan, M., Dhandayuthapani, S., & Suresh, S. (2018). Seminal reactive oxygen species and total antioxidant capacity: Correlations with sperm parameters and impact on male infertility. Clinical and Experimental Reproductive Medicine, 45(2), 88.

    VOIR

    Tiseo, B. C., Gaskins, A. J., Hauser, R., Chavarro, J. E., & Tanrikut, C. (2017). Coenzyme Q10 Intake From Food and Semen Parameters in a Subfertile Population. Urology, 102, 100–105.

    VOIR

    Yao, D., & Mills, J. (2016). Male infertility: lifestyle factors and holistic, complementary, and alternative therapies. Asian Journal of Andrology, 18(3), 410.

    VOIR

    Fertilité / Fragmentation de l’ADN Spermatique & Stress Oxydatif

    Al Omrani, B., Al Eisa, N., Javed, M., Al Ghedan, M., Al Matrafi, H., & Al Sufyan, H. (2018). Associations of sperm DNA fragmentation with lifestyle factors and semen parameters of Saudi men and its impact on ICSI outcome. Reproductive Biology and Endocrinology: RB&E, 16(1), 49.

    VOIR

    Alvarez Sedó, C., Bilinski, M., Lorenzi, D., Uriondo, H., Noblía, F., Longobucco, V., … Nodar, F. (2017). Effect of sperm DNA fragmentation on embryo development: clinical and biological aspects. JBRA Assisted Reproduction, 21(4), 343–350.

    VOIR

    Bosco, L., Notari, T., Ruvolo, G., Roccheri, M. C., Martino, C., Chiappetta, R., … Montano, L. (2018). Sperm DNA fragmentation: An early and reliable marker of air pollution. Environmental Toxicology and Pharmacology, 58, 243–249.

    VOIR

    Carlini, T., Paoli, D., Pelloni, M., Faja, F., Dal Lago, A., Lombardo, F., … Gandini, L. (2017). Sperm DNA fragmentation in Italian couples with recurrent pregnancy loss. Reproductive BioMedicine Online, 34(1), 58–65.

    VOIR

    Cho, C.-L., & Agarwal, A. (2018). Role of sperm DNA fragmentation in male factor infertility: A systematic review. Arab Journal of Urology, 16(1), 21–34.

    VOIR

    Colaco, S., & Sakkas, D. (2018). Paternal factors contributing to embryo quality. Journal of Assisted Reproduction and Genetics.

    VOIR

    Comar, V. A., Petersen, C. G., Mauri, A. L., Mattila, M., Vagnini, L. D., Renzi, A., … Franco Jr, J. G. (2017). Influence of the abstinence period on human sperm quality: analysis of 2,458 semen samples. JBRA Assisted Reproduction.

    VOIR

    Duarte, C., Núñez, V., Wong, Y., Vivar, C., Benites, E., Rodriguez, U., … Ponce, J. (2017). Impact of the Z potential technique on reducing the sperm DNA fragmentation index, fertilization rate and embryo development. JBRA Assisted Reproduction.

    VOIR

    Esbert, M., Pacheco, A., Soares, S. R., Amorós, D., Florensa, M., Ballesteros, A., & Meseguer, M. (2018). High sperm DNA fragmentation delays human embryo kinetics when oocytes from young and healthy donors are microinjected. Andrology.

    VOIR

    Esteves, S. C. (2018). Testicular versus ejaculated sperm should be used for intracytoplasmic sperm injection (ICSI) in cases of infertility associated with sperm DNA fragmentation | Opinion: Yes. International Braz j Urol, 44(4), 667–675.

    VOIR

    Garolla, A., Ghezzi, M., Cosci, I., Sartini, B., Bottacin, A., Engl, B., … Foresta, C. (2017). FSH treatment in infertile males candidate to assisted reproduction improved sperm DNA fragmentation and pregnancy rate. Endocrine, 56(2), 416–425.

    VOIR

    Kim, G. Y. (2018). What should be done for men with sperm DNA fragmentation? Clinical and Experimental Reproductive Medicine, 45(3), 101.

    VOIR

    Kumar, N., & Singh, A. K. (2018). Reactive Oxygen Species in Seminal Plasma as a Cause of Male Infertility. Journal of Gynecology Obstetrics and Human Reproduction.

    VOIR

    Lu, J.-C., Jing, J., Chen, L., Ge, Y.-F., Feng, R.-X., Liang, Y.-J., & Yao, B. (2018). Analysis of human sperm DNA fragmentation index (DFI) related factors: a report of 1010 subfertile men in China. Reproductive Biology and Endocrinology, 16(1).

    VOIR

    McSwiggin, H. M., & O’Doherty, A. M. (2018). Epigenetic reprogramming during spermatogenesis and male factor infertility. Reproduction, 156(2), R9–R21.

    VOIR

    Oumaima, A., Tesnim, A., Zohra, H., Amira, S., Ines, Z., Sana, C., … Meriem, M. (2018). Investigation on the origin of sperm morphological defects: oxidative attacks, chromatin immaturity, and DNA fragmentation. Environmental Science and Pollution Research.

    VOIR

    Panner Selvam, M. K., & Agarwal, A. (2018). A systematic review on sperm DNA fragmentation in male factor infertility: Laboratory assessment. Arab Journal of Urology, 16(1), 65–76.

    VOIR

    Roque, M., & Esteves, S. C. (2018). Effect of varicocele repair on sperm DNA fragmentation: a review. International Urology and Nephrology, 50(4), 583–603.

    VOIR

    Sigman, M. (2018). Testicular versus ejaculated sperm should be used for intracytoplasmic sperm injection (ICSI) in cases of infertility associated with sperm DNA fragmentation | Opinion: No. International Braz j Urol, 44(4), 676–679.

    VOIR

    Simon, L., Emery, B. R., & Carrell, D. T. (2017). Review: Diagnosis and impact of sperm DNA alterations in assisted reproduction. Best Practice & Research Clinical Obstetrics & Gynaecology, 44, 38–56.

    VOIR

    Stenqvist, A., Oleszczuk, K., Leijonhufvud, I., & Giwercman, A. (2018). Impact of antioxidant treatment on DNA fragmentation index: a double-blind placebo-controlled randomized trial. Andrology.

    VOIR

    Wiweko, B., & Utami, P. (2017). Predictive value of sperm deoxyribonucleic acid (DNA) fragmentation index in male infertility. Basic and Clinical Andrology, 27(1).

    VOIR

    Zandieh, Z., Vatannejad, A., Doosti, M., Zabihzadeh, S., Haddadi, M., Bajelan, L., … Amanpour, S. (2018). Comparing reactive oxygen species and DNA fragmentation in semen samples of unexplained infertile and healthy fertile men. Irish Journal of Medical Science (1971 -), 187(3), 657–662.

    VOIR

    Zeqiraj, A., Beadini, S., Beadini, N., Aliu, H., Gashi, Z., Elezaj, S., … Shabani, A. (2018). Male Infertility and Sperm DNA Fragmentation. Open Access Macedonian Journal of Medical Sciences, 6(8), 1342–1345.

    VOIR

    Fertilité et environnement

    Aboulmaouahib, S., Madkour, A., Kaarouch, I., Sefrioui, O., Saadani, B., Copin, H., … Cadi, R. (2018). Impact of alcohol and cigarette smoking consumption in male fertility potential: Looks at lipid peroxidation, enzymatic antioxidant activities and sperm DNA damage. Andrologia, 50(3), e12926.

    VOIR

    Antoniassi, M. P., Intasqui, P., Camargo, M., Zylbersztejn, D. S., Carvalho, V. M., Cardozo, K. H. M., & Bertolla, R. P. (2016). Analysis of the functional aspects and seminal plasma proteomic profile of sperm from smokers. BJU International, 118(5), 814–822.

    VOIR

    Asare-Anane, H., Bannison, S. B., Ofori, E. K., Ateko, R. O., Bawah, A. T., Amanquah, S. D., … Ziem, J. B. (2016). Tobacco smoking is associated with decreased semen quality. Reproductive Health, 13(1).

    VOIR

    Barbonetti, A., Castellini, C., Di Giammarco, N., Santilli, G., Francavilla, S., & Francavilla, F. (2016). In vitro exposure of human spermatozoa to bisphenol A induces pro-oxidative/apoptotic mitochondrial dysfunction. Reproductive Toxicology, 66, 61–67.

    VOIR

    Bergamo, P., Volpe, M. G., Lorenzetti, S., Mantovani, A., Notari, T., Cocca, E., … Montano, L. (2016). Human semen as an early, sensitive biomarker of highly polluted living environment in healthy men: A pilot biomonitoring study on trace elements in blood and semen and their relationship with sperm quality and RedOx status. Reproductive Toxicology (Elmsford, N.Y.), 66, 1–9.

    VOIR

    Borges, E., Braga, D. P. de A. F., Provenza, R. R., Figueira, R. de C. S., Iaconelli, A., & Setti, A. S. (2018). Paternal lifestyle factors in relation to semen quality and in vitro reproductive outcomes. Andrologia, e13090.

    VOIR

    Chen, Q., Yang, H., Zhou, N., Sun, L., Bao, H., Tan, L., … Cao, J. (2017). Phthalate exposure, even below US EPA reference doses, was associated with semen quality and reproductive hormones: Prospective MARHCS study in general population. Environment International, 104, 58–68.

    VOIR

    Chianese, R., Troisi, J., Richards, S., Scafuro, M., Fasano, S., Guida, M., … Meccariello, R. (2017). Bisphenol A in reproduction: epigenetic effects. Current Medicinal Chemistry, 24.

    VOIR

    Comhaire, F. H., Vandenberghe, W., & Decleer, W. (2017). External factors affecting fertility, and how to correct their impact. Facts, Views & Vision in ObGyn, 9(4), 217–221.

    Condorelli, R. A., La Vignera, S., Giacone, F., Iacoviello, L., Mongioì, L. M., Li Volti, G., … Calogero, A. E. (2017). Nicotine Effects and Receptor Expression on Human Spermatozoa: Possible Neuroendocrine Mechanism. Frontiers in Physiology, 8.

    VOIR

    Consales, C., Toft, G., Leter, G., Bonde, J. P. E., Uccelli, R., Pacchierotti, F., … Spanò, M. (2016). Exposure to persistent organic pollutants and sperm DNA methylation changes in Arctic and European populations. Environmental and Molecular Mutagenesis, 57(3), 200–209.

    VOIR

    Cremonese, C., Piccoli, C., Pasqualotto, F., Clapauch, R., Koifman, R. J., Koifman, S., & Freire, C. (2017). Occupational exposure to pesticides, reproductive hormone levels and sperm quality in young Brazilian men. Reproductive Toxicology (Elmsford, N.Y.), 67, 174–185.

    VOIR

    Esakky, P., & Moley, K. H. (2016). Paternal smoking and germ cell death: A mechanistic link to the effects of cigarette smoke on spermatogenesis and possible long-term sequelae in offspring. Molecular and Cellular Endocrinology, 435, 85–93.

    VOIR

    Gabrielsen, J. S., & Tanrikut, C. (2016). Chronic exposures and male fertility: the impacts of environment, diet, and drug use on spermatogenesis. Andrology, 4(4), 648–661.

    VOIR

    Giudice, L. C. (2016). Environmental toxicants: hidden players on the reproductive stage. Fertility and Sterility, 106(4), 791–794.

    VOIR

    Goldstone, A. E., Chen, Z., Perry, M. J., Kannan, K., & Louis, G. M. B. (2015). Urinary bisphenol A and semen quality, the LIFE Study. Reproductive Toxicology (Elmsford, N.Y.), 51, 7–13.

    VOIR

    Habas, K., Najafzadeh, M., Baumgartner, A., Brinkworth, M. H., & Anderson, D. (2017). An evaluation of DNA damage in human lymphocytes and sperm exposed to methyl methanesulfonate involving the regulation pathways associated with apoptosis. Chemosphere, 185, 709–716.

    VOIR

    Hanson, H. A., Mayer, E. N., Anderson, R. E., Aston, K. I., Carrell, D. T., Berger, J., … Hotaling, J. M. (2016). Risk of childhood mortality in family members of men with poor semen quality. Human Reproduction.

    VOIR

    Jurewicz, J., Radwan, M., Wielgomas, B., Dziewirska, E., Karwacka, A., Klimowska, A., … Hanke, W. (2017). Human Semen Quality, Sperm DNA Damage, and the Level of Reproductive Hormones in Relation to Urinary Concentrations of Parabens. Journal of Occupational and Environmental Medicine, 59(11), 1034–1040.

    VOIR

    Jurewicz, J., Radwan, M., Wielgomas, B., Kałużny, P., Klimowska, A., Radwan, P., & Hanke, W. (2018). Environmental levels of triclosan and male fertility. Environmental Science and Pollution Research, 25(6), 5484–5490.

    VOIR

    Lalinde-Acevedo, P., Torres, B. J. M., Agarwal, A., Plessis, S. du, Ahmad, G., Cadavid, A., & Maya, W. C. (2017). Physically Active Men Show Better Semen Parameters than Their Sedentary Counterparts. Int J Fertil Steril, (3).

    VOIR

    Mínguez-Alarcón, L., Hauser, R., & Gaskins, A. J. (2016). Effects of bisphenol A on male and couple reproductive health: a review. Fertility and Sterility, 106(4), 864–870.

    VOIR

    Mohamad Al-Ali, B., & Eredics, K. (2017). Synergistic effects of cigarette smoking and varicocele on semen parameters in 715 patients. Wiener Klinische Wochenschrift, 129(13–14), 482–486.

    VOIR

    Oliveira, J. B. A., Petersen, C. G., Mauri, A. L., Vagnini, L. D., Renzi, A., Petersen, B., … Franco, J. G. (2017). Association between body mass index and sperm quality and sperm DNA integrity. A large population study. Andrologia, e12889.

    VOIR

    Oliveri Conti, G., Calogero, A., Giacone, F., Fiore, M., Barchitta, M., Agodi, A., & Ferrante, M. (2017). B(a)P adduct levels and fertility: A crosssectional study in a Sicilian population. Molecular Medicine Reports.

    VOIR

    Omran, G. A., Gaber, H. D., Mostafa, N. A. M., Abdel-Gaber, R. M., & Salah, E. A. (2018). Potential hazards of bisphenol A exposure to semen quality and sperm DNA integrity among infertile men. Reproductive Toxicology, 81, 188–195.

    VOIR

    Partal-Lorente, A. B., Maldonado-Ezequiel, V., Martinez-Navarro, L., Herrera-Contreras, I., Gutierrez-Repiso, C., García-Fuentes, E., & Santiago-Fernandez, P. (2017). Iodine is associated to semen quality in men who undergo consultations for infertility. Reproductive Toxicology (Elmsford, N.Y.), 73, 1–7.

    VOIR

    Radwan, M., Jurewicz, J., Wielgomas, B., Sobala, W., Piskunowicz, M., Radwan, P., & Hanke, W. (2014). Semen quality and the level of reproductive hormones after environmental exposure to pyrethroids. Journal of Occupational and Environmental Medicine, 56(11), 1113–1119.

    VOIR

    Radwan, M., Wielgomas, B., Dziewirska, E., Radwan, P., Kałużny, P., Klimowska, A., … Jurewicz, J. (2018). Urinary Bisphenol A Levels and Male Fertility. American Journal of Men’s Health, 155798831879916.

    VOIR

    Sansone, A., Di Dato, C., de Angelis, C., Menafra, D., Pozza, C., Pivonello, R., … Gianfrilli, D. (2018). Smoke, alcohol and drug addiction and male fertility. Reproductive Biology and Endocrinology, 16(1).

    VOIR

    Schagdarsurengin, U., Western, P., Steger, K., & Meinhardt, A. (2016). Developmental origins of male subfertility: role of infection, inflammation, and environmental factors. Seminars in Immunopathology, 38(6), 765–781.

    VOIR

    Sedha, S., Kumar, S., & Shukla, S. (2015). Role of Oxidative Stress in Male Reproductive Dysfunctions with Reference to Phthalate Compounds. Urology Journal, 12(5), 2304–2316.

    Viganò, P., Chiaffarino, F., Bonzi, V., Salonia, A., Ricci, E., Papaleo, E., … Parazzini, F. (2017). Sleep disturbances and semen quality in an Italian cross sectional study. Basic and Clinical Andrology, 27(1).

    VOIR

    Zhang, G., Yan, H., Chen, Q., Liu, K., Ling, X., Sun, L., … Cao, J. (2016). Effects of cell phone use on semen parameters: Results from the MARHCS cohort study in Chongqing, China. Environment International, 91, 116–121.

    VOIR

    Nutri-génétique

    Rohollah Setarehbadi et al., “Apolipoprotein E Genotypes of Fertile and Infertile Men,” Systems Biology in Reproductive Medicine 58, no. 5 (October 1, 2012): 263–67

    VOIR

    Rosa Maria Corbo et al., “Study on a Possible Effect of Four Longevity Candidate Genes (ACE, PON1, PPAR-Γ, and APOE) on Human Fertility,” Biogerontology 9, no. 5 (October 1, 2008): 317–23

    VOIR

    Dolores Corella et al., “MicroRNA-410 Regulated Lipoprotein Lipase Variant rs13702 Is Associated with Stroke Incidence and Modulated by Diet in the Randomized Controlled PREDIMED Trial,” The American Journal of Clinical Nutrition 100, no. 2 (August 2014): 719–31

    VOIR

    Kris Richardson et al., “Gain-of-Function Lipoprotein Lipase Variant rs13702 Modulates Lipid Traits through Disruption of a MicroRNA-410 Seed Site,” American Journal of Human Genetics 92, no. 1 (January 10, 2013): 5–14

    VOIR

    Eddi Buldreghini et al., “Single Nucleotide Polymorphism (SNP) of the Endothelial Nitric Oxide Synthase (eNOS) Gene (Glu298Asp Variant) in Infertile Men with Asthenozoospermia,” Journal of Andrology 31, no. 5 (October 2010): 482–88

    VOIR

    N. L. J. Vučić et al., “NOS3 Gene Variants and Male Infertility: Association of 4a/4b with Oligoasthenozoospermia,” Andrologia, May 3, 2017

    VOIR

    Pauline Roumaud and Luc J. Martin, “Roles of Leptin, Adiponectin and Resistin in the Transcriptional Regulation of Steroidogenic Genes Contributing to Decreased Leydig Cells Function in Obesity,” Hormone Molecular Biology and Clinical Investigation 24, no. 1 (2015): 25–45

    VOIR

    Jennifer F. Kawwass, Ross Summer, and Caleb B. Kallen, “Direct Effects of Leptin and Adiponectin on Peripheral Reproductive Tissues: A Critical Review,” MHR: Basic Science of Reproductive Medicine 21, no. 8 (August 1, 2015): 617–32

    VOIR

    Konstantinos Michalakis et al., “The Complex Interaction between Obesity, Metabolic Syndrome and Reproductive Axis: A Narrative Review,” Metabolism 62, no. 4 (April 1, 2013): 457–78

    VOIR

    Kawwass, Summer, and Kallen, “Direct Effects of Leptin and Adiponectin on Peripheral Reproductive Tissues.”

    Michalakis et al., “The Complex Interaction between Obesity, Metabolic Syndrome and Reproductive Axis.”

    A. Hodzic et al., “Genetic Variation in Leptin and Leptin Receptor Genes as a Risk Factor for Idiopathic Male Infertility.,” Andrology 5, no. 1 (January 2017): 70–74

    VOIR

    Saeid Khosropour et al., “Leptin and Leptin-Receptor Polymorphisms in Fertile and Infertile Men.,” Systems Biology in Reproductive Medicine 63, no. 1 (February 2017): 7–14

    VOIR

    Hodzic et al., “Genetic Variation in Leptin and Leptin Receptor Genes as a Risk Factor for Idiopathic Male Infertility.”; Khosropour et al., “Leptin and Leptin-Receptor Polymorphisms in Fertile and Infertile Men.”

    S. Hellstrand et al., “Intake Levels of Dietary Long-Chain PUFAs Modify the Association between Genetic Variation in FADS and LDL-C,” Journal of Lipid Research 53, no. 6 (June 2012): 1183–89

    VOIR

    Susanne F. Meisel et al., “The Association of FTO SNP rs9939609 with Weight Gain at University,” Obesity Facts 8, no. 4 (2015): 243–51

    VOIR

    “Sequencing of FTO and ALKBH5 in Men Undergoing Infertility Work-up Identifies an Infertility-Associated Variant and Two Missense Mutations,” accessed June 8, 2017

    VOIR

    Celia Ravel et al., “Lack of Association between Genetic Polymorphisms in Enzymes Associated with Folate Metabolism and Unexplained Reduced Sperm Counts,” PloS One 4, no. 8 (August 6, 2009): e6540

    VOIR

    Kiran Singh et al., “Cystathionine B-Synthase 844ins68 Gene Variant and Idiopathic Male Infertility,” Reproductive Sciences (Thousand Oaks, Calif.), August 5, 2009

    VOIR

    Abdelmajid Eloualid et al., “Association of the MTHFR A1298C Variant with Unexplained Severe Male Infertility,” PloS One 7, no. 3 (2012): e34111

    VOIR

    S. K. Jaiswal et al., “Choline Metabolic Pathway Gene Polymorphisms and Risk for Down Syndrome: An Association Study in a Population with Folate-Homocysteine Metabolic Impairment,” European Journal of Clinical Nutrition 71, no. 1 (January 2017): 45–50

    VOIR

    Wai Yee Wong et al., “Effects of Folic Acid and Zinc Sulfate on Male Factor Subfertility: A Double-Blind, Randomized, Placebo-Controlled Trial,” Fertility and Sterility 77, no. 3 (March 1, 2002): 491–98

    VOIR

    Jianbing Huang et al., “MTHFR rs1801133 C>T Polymorphism Is Associated with an Increased Risk of Tetralogy of Fallot,” Biomedical Reports 2, no. 2 (March 2014): 172–76

    VOIR

    R. Najafipour et al., “Effect of B9 and B12 Vitamin Intake on Semen Parameters and Fertility of Men with MTHFR Polymorphisms.,” Andrology 5, no. 4 (July 2017): 704–10

    VOIR

    Frank Tüttelmann et al., “Gene Polymorphisms and Male Infertility – a Meta-Analysis and Literature Review,” Reproductive BioMedicine Online 15, no. 6 (January 1, 2007): 643–58

    VOIR

    Eloualid et al., “Association of the MTHFR A1298C Variant with Unexplained Severe Male Infertility.”

    Mateusz Kurzawski et al., “Association Study of Folate-Related Enzymes (MTHFR, MTR, MTRR) Genetic Variants with Non-Obstructive Male Infertility in a Polish Population,” Genetics and Molecular Biology 38, no. 1 (March 2015): 42–47

    VOIR

    Min Chen et al., “Association between rs1801133 Polymorphism and Risk of Adult Ischemic Stroke: Meta-Analysis Based on Case–control Studies,” Thrombosis Research 137 (January 1, 2016): 17–25

    VOIR

    Kang Liu et al., “Role of Genetic Mutations in Folate-Related Enzyme Genes on Male Infertility,” Scientific Reports 5 (November 9, 2015): 15548

    VOIR

    Jaiswal et al., “Choline Metabolic Pathway Gene Polymorphisms and Risk for Down Syndrome.”

    Laurel E Murphy et al., “Folate and Vitamin B12 in Idiopathic Male Infertility,” Asian Journal of Andrology 13, no. 6 (November 2011): 856–61

    VOIR

    Amy R. Johnson et al., “Choline Dehydrogenase Polymorphism rs12676 Is a Functional Variation and Is Associated with Changes in Human Sperm Cell Function,” PLOS ONE 7, no. 4 (avr 2012): e36047

    VOIR

    Shabnam Shokouhi et al., “Association of rs7903146, rs12255372, and rs290487 Polymorphisms in TCF7L2 Gene with Type 2 Diabetes in an Iranian Kurdish Ethnic Group,” Clinical Laboratory 60, no. 8 (2014): 1269–76.

    Singh et al., “Cystathionine B-Synthase 844ins68 Gene Variant and Idiopathic Male Infertility.”

    Agnar Helgason et al., “Refining the Impact of TCF7L2 Gene Variants on Type 2 Diabetes and Adaptive Evolution,” Nature Genetics 39, no. 2 (February 2007): 218–25

    VOIR

    Felipe Costa et al., “Influence of Val16Ala-SOD2 Polymorphism on Sperm Quality Parameters,” Human Fertility (Cambridge, England), June 28, 2017, 1–8

    VOIR

    J. Chang et al., “eNOS Gene T786C, G894T and 4a4b Polymorphisms and Male Infertility Susceptibility: A Meta-Analysis.,” Andrologia 49, no. 4 (May 2017)

    VOIR

    Jaiswal et al., “Choline Metabolic Pathway Gene Polymorphisms and Risk for Down Syndrome.”

    Jaiswal et al.,

    Yafei Li et al., “Semen Quality of 1346 Healthy Men, Results from the Chongqing Area of Southwest China,” Human Reproduction (Oxford, England) 24, no. 2 (February 2009): 459–69

    VOIR

    E. Andrès et al., “Oral Cobalamin (Vitamin B(12)) Treatment. An Update,” International Journal of Laboratory Hematology 31, no. 1 (February 2009): 1–8

    VOIR

    H. Zetterberg et al., “The Transcobalamin Codon 259 Polymorphism Influences the Risk of Human Spontaneous Abortion,” Human Reproduction 17, no. 12 (December 1, 2002): 3033–36

    VOIR

    Wei Luan et al., “Developmental Vitamin D (DVD) Deficiency Reduces Nurr1 and TH Expression in Post-Mitotic Dopamine Neurons in Rat Mesencephalon,” Molecular Neurobiology, April 1, 2017

    VOIR

    Luigi Ferrucci et al., “Common Variation in the β-Carotene 15,15-Monooxygenase 1 Gene Affects Circulating Levels of Carotenoids: A Genome-Wide Association Study,” The American Journal of Human Genetics 84, no. 2 (February 13, 2009): 123–33

    VOIR

    Makoto Chihara et al., “Association of NR3C1/Glucocorticoid Receptor Gene SNP with Azoospermia in Japanese Men,” The Journal of Obstetrics and Gynaecology Research 42, no. 1 (January 2016): 59–66

    VOIR

    Eva F. G. Naninck et al., “Early Micronutrient Supplementation Protects against Early Stress–induced Cognitive Impairments,” The FASEB Journal 31, no. 2 (February 1, 2017): 505–18

    VOIR